Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without 4-cycles and 7-cycles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equitable ∆-Coloring of Planar Graphs without 4-cycles

In this paper, we prove that if G is a planar graph with maximum degree ∆ ≥ 7 and without 4-cycles, then G is equitably m-colorable for any m≥ ∆.

متن کامل

List-Coloring the Squares of Planar Graphs without 4-Cycles and 5-Cycles

Let G be a planar graph without 4-cycles and 5-cycles and with maximum degree ∆ ≥ 32. We prove that χ`(G ) ≤ ∆ + 3. For arbitrarily large maximum degree ∆, there exist planar graphs G∆ of girth 6 with χ(G 2 ∆) = ∆ + 2. Thus, our bound is within 1 of being optimal. Further, our bound comes from coloring greedily in a good order, so the bound immediately extends to online list-coloring. In additi...

متن کامل

Total coloring of planar graphs without some chordal 6-cycles

A k-total-coloring of a graph G is a coloring of vertex set and edge set using k colors such that no two adjacent or incident elements receive the same color. In this paper, we prove that if G is a planar graph with maximum ∆ ≥ 8 and every 6-cycle of G contains at most one chord or any chordal 6-cycles are not adjacent, then G has a (∆ + 1)-total-coloring.

متن کامل

Incidence coloring of planar graphs without adjacent small cycles

An incidence of an undirected graph G is a pair (v, e) where v is a vertex of G and e an edge of G incident with v. Two incidences (v, e) and (w, f) are adjacent if one of the following holds: (i) v = w, (ii) e = f or (iii) vw = e or f . An incidence coloring of G assigns a color to each incidence of G in such a way that adjacent incidences get distinct colors. In 2012, Yang [15] proved that ev...

متن کامل

Equitable Coloring and Equitable Choosability of Planar Graphs without 6- and 7-Cycles

A graph G is equitably k-choosable if for any k-uniform list assignment L, G is L-colorable and each color appears on at most d|V (G)|/ke vertices. A graph G is equitable kcolorable if G has a proper vertex coloring with k colors such that the size of the color classes differ by at most 1. In this paper, we prove that if G is a planar graph without 5and 7-cycles, then G is equitably k-choosable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2021

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.2405